Issue 46, 2018

Controlled synthesis of Pt nanoparticle supported TiO2 nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction

Abstract

The development of adequate cathode materials is one of the principal tasks for the fabrication of efficient proton-exchange membrane fuel cells (PEMFCs), which are envisaged as clean energy sources for future transport and portable electrodomestic applications. Here, we present a platinum nanoparticle (NPs)-decorated one-dimensional (1D) titanium dioxide nanorod (PtNPs/TiO2NRs) nanocomposite with enhanced electrocatalytic performance towards the oxygen reduction reaction (ORR). The TiO2NRs were prepared through a green approach, utilizing seaweed extract that not only acts as a reducing agent but also serves as a soft template for the directional growth of TiO2 nanostructures. PtNPs of about 3.0 nm average size were decorated over pre-synthesized TiO2NRs through the chemical reduction of Pt ions using sodium borohydride. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy analyses confirmed the presence of strong metal-support interactions (SMSI) in the prepared hybrid nanocomposite. The as-prepared PtNPs/TiO2NRs composite nanostructures exhibited significantly enhanced electrocatalytic performance and stability towards the ORR, with specific and mass activities of 0.428 mA cm−2 at 0.55 V and 128 mA mg−1 Pt, respectively. These values are 7.2 and 3.5 fold higher than that of standard Pt/C catalysts (0.059 mA cm−2 and 36 mA mg−1 Pt), respectively. The enhanced catalytic activity and high stability of the composite catalyst are mainly due to the unique 1D morphology of the TiO2 nanostructures, which provides a greater surface area, and the SMSI enhancing electron transfer rate at their functional interface. The green approach utilized to fabricate the Pt/TiO2NRs composite in the present study provides a new, low-cost strategy for the development of metal–oxide hybrid nanostructures of high electrocatalytic activity for fuel cell applications.

Graphical abstract: Controlled synthesis of Pt nanoparticle supported TiO2 nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2018
Accepted
25 Oct 2018
First published
25 Oct 2018

J. Mater. Chem. A, 2018,6, 23435-23444

Controlled synthesis of Pt nanoparticle supported TiO2 nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction

P. S. Murphin Kumar, V. K. Ponnusamy, K. R. Deepthi, G. Kumar, A. Pugazhendhi, H. Abe, S. Thiripuranthagan, U. Pal and S. K. Krishnan, J. Mater. Chem. A, 2018, 6, 23435 DOI: 10.1039/C8TA07380E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements