Issue 48, 2018

Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte

Abstract

Supercapacitors with high energy density and long cycle life without decay in the consecutive bending operation are urgently required for the next generation of wearable electronic devices. Here, we report a high-voltage flexible supercapacitor with enhanced energy density, which can be attributed to the tailored hierarchical carbon (HC) electrode materials and organic gel electrolyte. HC derived from MOF@graphene is synthesized via a facile and environmentally friendly process, where MOF derived porous carbon polyhedra are in situ anchored on the graphene surface to form a hierarchical nano-architecture. The HC shows a synergistic effect of porous nanocarbon and graphene, and possesses a large surface area (2837 m2 g−1), desired meso-/micropore distribution and superior conductivity. A 3.5 V solid-state flexible supercapacitor is constructed by employing HC electrodes and EMIMBF4/PVDF-HFP gel electrolyte, and it demonstrates a superior specific capacitance (201 F g−1) and good cycle life. The energy and power densities are significantly promoted (86 W h kg−1 at 438 W kg−1 and 61 W h kg−1 at 17 500 W kg−1). Meanwhile, the flexible supercapacitor shows excellent mechanical bending performance, exhibiting negligible capacitance decay under various bending states and repeated bending cycles, representing its promising potential for application in wearable electronics.

Graphical abstract: Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2018
Accepted
18 Nov 2018
First published
20 Nov 2018

J. Mater. Chem. A, 2018,6, 24979-24987

Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte

W. Liu, K. Wang, C. Li, X. Zhang, X. Sun, J. Han, X. Wu, F. Li and Y. Ma, J. Mater. Chem. A, 2018, 6, 24979 DOI: 10.1039/C8TA09839E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements