One-pot synthesis of glutathione-responsive amphiphilic drug self-delivery micelles of doxorubicin–disulfide–methoxy polyethylene glycol for tumor therapy†
Abstract
We present a novel glutathione-responsive amphiphilic drug self-delivery (DSD) micelle with one-pot synthesis to synergistically address the problems of controlled drug release, degradability, drug tracing and in vivo accumulated toxicity. The anticancer drug doxorubicin (DOX), disulfide-based diacrylate (DSDA) and amino-polyethylene glycol monomethyl ether were linked by Michael addition in one-pot synthesis. The accumulative release rate of DOX analogues with drug activity from the micelles was 67.9% under pH 7.4 and GSH = 1 mg mL−1 conditions after 72 h. The cell uptake experiment showed that the micelles of DOX–DSDA–PEG were indeed taken up by A549 cells and distributed to cell nuclei. The in vitro cell viability of A549 cells was evaluated by CCK-8 and Muse Annexin V & Dead Cell Kit. The results illustrated that the completely biodegradable micelles with glutathione-responsive bonds in the backbone are an effective drug self-delivery system for tumor therapy in the future.