Issue 16, 2018

Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication

Abstract

We describe the synthesis and properties of a new composite material based on heparin and MIL-101(Fe) metal–organic framework. The intrinsic instability of MIL-101(Fe) towards hydrolysis enables binding of heparin molecules to the framework structure as is evidenced by DFT calculations and adsorption experiments. The de novo formed heparin–MOF composites showed good biocompatibility in in vitro and demonstrated pronounced anticoagulant activity. The specific interaction between the bioactive molecule and the carrier is critical for the selective degradation of the complex in the body fluids and for the enhanced activity. Hep_MIL-101(Fe) composite could serve as a drug-releasing depot for nanofabrication and to introduce anticoagulant activity to medical devices and biocoatings. Addition of Hep_MIL-101(Fe) to a sol–gel derived thrombolytic matrix allowed the combination of anticoagulant and thrombolytic activities in a single hybrid nanomaterial that could be applied as a bioactive nanocoating for PTFE vein implants.

Graphical abstract: Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2018
Accepted
21 Feb 2018
First published
22 Feb 2018

J. Mater. Chem. B, 2018,6, 2450-2459

Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication

V. V. Vinogradov, A. S. Drozdov, L. R. Mingabudinova, E. M. Shabanova, N. O. Kolchina, E. I. Anastasova, A. A. Markova, A. A. Shtil, V. A. Milichko, G. L. Starova, R. L. M. Precker, A. V. Vinogradov, E. Hey-Hawkins and E. A. Pidko, J. Mater. Chem. B, 2018, 6, 2450 DOI: 10.1039/C8TB00072G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements