A visible-near-infrared fluorescent probe for peroxynitrite with large pseudo-Stokes and emission shift via through-bond energy and charge transfers controlled by energy matching†
Abstract
We reported a visible-near-infrared fluorescent probe for peroxynitrite detection with large pseudo-Stokes and emission shifts, based on through-bond energy transfer (TBET) in combination with intramolecular charge transfer (ICT). Pyrene was chosen as a fluorophore (acceptor), which has monomer/excimer fluorescence characteristics. A conjugated 1,2-dimethylenehydrazine structure was a linker and phenyl boronate was selected as a reaction site (donor) to design the probe (Py-PhB) using the chemical transformation from boronate to phenol, which results in the increase of the energy of the donor to match the energy of the acceptor and simultaneously achieves TBET and ICT between the donor (phenolate) and the acceptor (pyrene), leading to a fluorescence ‘OFF–ON’ in a red-shifted region and a large emission shift. The results show that the probe exhibits high selectivity to ONOO− with a detection limit of 3.54 μM. Favorable ICT from phenolate to pyrene makes the probe possess a large monomer emission shift (183 nm), red-shifted to organe-red light (598 nm). TBET ensures the probe with a large pseudo-Stokes shift of 244 nm. Furthermore, its excimer emits a near-infrared light (720 nm), which is extremely beneficial for bioimaging. In short, this probe offers a novel design strategy for designing the TBET fluorescent sensors emitting red or NIR light with large pseudo-Stokes and emission shifts.