Issue 18, 2018

Bioactive silk hydrogels with tunable mechanical properties

Abstract

Developing bioactive hydrogels with the potential to guide the differentiation behavior of stem cells has become increasingly important in the biomaterials field. Here, silk hydrogels with tunable mechanical properties were developed by introducing inert silk fibroin nanofibers (SNFs) within an enzyme crosslinked system of regenerated silk fibroin (RSF). After the crosslinking reaction of RSF, the inert SNF was embedded into the RSF hydrogel matrix, resulting in improved mechanical properties. Tunable stiffness in the range of 9–60 kPa was achieved by adjusting the amount of added SNF, which is significantly higher than SNF-free hydrogels formed under the same conditions (about 1 kPa). In addition, the proliferation of rat bone marrow derived mesenchymal stem cells cultured on the composite hydrogels and differentiated into endothelial cells, myoblast and osteoblast cells was improved, putatively due to the control of stiffness of the hydrogels. Bioactive and tunable silk-based hydrogels were prepared via a composite SNF and crosslinked RSF system, providing a new strategy to design silk biomaterials with tunable mechanical and biological performance.

Graphical abstract: Bioactive silk hydrogels with tunable mechanical properties

Supplementary files

Article information

Article type
Paper
Submitted
06 Mar 2018
Accepted
22 Mar 2018
First published
22 Mar 2018

J. Mater. Chem. B, 2018,6, 2739-2746

Bioactive silk hydrogels with tunable mechanical properties

X. Wang, Z. Ding, C. Wang, X. Chen, H. Xu, Q. Lu and D. L. Kaplan, J. Mater. Chem. B, 2018, 6, 2739 DOI: 10.1039/C8TB00607E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements