Issue 43, 2018

3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application

Abstract

We present for the first time approaches to 3D-printing of nanocellulose hydrogel scaffolds based on double crosslinking, first by in situ Ca2+ crosslinking and post-printing by chemical crosslinking with 1,4-butanediol diglycidyl ether (BDDE). Scaffolds were successfully printed from 1% nanocellulose hydrogels, with their mechanical strength being tunable in the range of 3 to 8 kPa. Cell tests suggest that the 3D-printed and BDDE-crosslinked nanocellulose hydrogel scaffolds supported fibroblast cells’ proliferation, which was improving with increasing rigidity. These 3D-printed scaffolds render nanocellulose a new member of the family of promising support structures for crucial cellular processes during wound healing, regeneration and tissue repair.

Graphical abstract: 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2018
Accepted
13 Oct 2018
First published
15 Oct 2018

J. Mater. Chem. B, 2018,6, 7066-7075

3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application

C. Xu, B. Zhang Molino, X. Wang, F. Cheng, W. Xu, P. Molino, M. Bacher, D. Su, T. Rosenau, S. Willför and G. Wallace, J. Mater. Chem. B, 2018, 6, 7066 DOI: 10.1039/C8TB01757C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements