Issue 4, 2018

SiC/HfyTa1−yCxN1−x/C ceramic nanocomposites with HfyTa1−yCxN1−x-carbon core–shell nanostructure and the influence of the carbon-shell thickness on electrical properties

Abstract

Dense monolithic SiC/HfyTa1−yCxN1−x/C (y = 0, 0.2 and 0.7) ceramic nanocomposites were prepared upon spark plasma sintering of amorphous SiHfTaC(N) ceramic powders which were synthesized from single-source-precursors. The microstructural evolution of the ceramic powders was investigated using elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). The results reveal that the powdered and dense monoliths of SiC/HfyTa1−yCxN1−x/C ceramic nanocomposites annealed at T ≥ 1700 °C and at 2200 °C, respectively, are characterized by the presence of a homogeneous dispersion of HfyTa1−yCxN1−x-carbon core–shell nanoparticles within a β-SiC matrix. Hf/Ta atomic ratios (or y values) of the in situ generated HfyTa1−yCxN1−x-carbon core–shell nanoparticles can be controlled precisely by molecular tailoring of the preceramic precursors, which further tunes the thickness of the in situ formed carbon shell. Interestingly, with increasing the value y the thickness of the carbon shell increases, while the electrical conductivity of the dense monolithic SiC/HfyTa1−yCxN1−x/C (y = 0, 0.2 and 0.7) nanocomposites significantly reduces. The unique HfyTa1−yCxN1−x-carbon core–shell nanostructure opens a new strategy towards tailoring the electrical conductivity of SiC/HfyTa1−yCxN1−x/C nanocomposites for potential electromagnetic applications in harsh environments.

Graphical abstract: SiC/HfyTa1−yCxN1−x/C ceramic nanocomposites with HfyTa1−yCxN1−x-carbon core–shell nanostructure and the influence of the carbon-shell thickness on electrical properties

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2017
Accepted
19 Dec 2017
First published
19 Dec 2017

J. Mater. Chem. C, 2018,6, 855-864

SiC/HfyTa1−yCxN1−x/C ceramic nanocomposites with HfyTa1−yCxN1−x-carbon core–shell nanostructure and the influence of the carbon-shell thickness on electrical properties

Q. Wen, Z. Yu, Y. Xu, Y. Lu, C. Fasel, K. Morita, O. Guillon, G. Buntkowsky, E. Ionescu and R. Riedel, J. Mater. Chem. C, 2018, 6, 855 DOI: 10.1039/C7TC05023B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements