Issue 17, 2018

Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing

Abstract

A facile, low-cost magnetic field-assisted chemical reduction method was proposed for synthesizing nickel nanowires (NiNWs) with both controllable diameter and high length to diameter (L/D) ratio at temperature as low as 60 °C. NiNWs with diameter as low as 180 ± 21 nm and L/D ratio as high as 300 were achieved by controlling the reaction temperature, NiCl2 concentration and the quantity of reductant in a magnetic field of 170 mT. Based on the NiNWs, a high-sensitivity and stretchable strain sensor with sandwich structure consisting of NiNWs and Ecoflex elastomer was proposed. Gauge factor as high as 200 was demonstrated up to a strain of 100%. Applications of the sensor in detecting body motion including finger gestures, facial expressions and different phonations are presented. This study provides a promising solution for smart sensors for next generation robotics as well as for human–machine interfacing applications.

Graphical abstract: Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing

Article information

Article type
Paper
Submitted
29 Dec 2017
Accepted
04 Apr 2018
First published
04 Apr 2018

J. Mater. Chem. C, 2018,6, 4737-4745

Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing

S. Wang, K. Chen, M. Wang, H. Li, G. Chen, J. Liu, L. Xu, Y. Jian, C. Meng, X. Zheng, S. Liu, C. Yin, Z. Wang, P. Du, S. Qu and C. W. Leung, J. Mater. Chem. C, 2018, 6, 4737 DOI: 10.1039/C7TC05970A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements