Issue 1, 2019

Selectivity enhancement of amperometric nitric oxide detection via shape-controlled electrodeposition of platinum nanostructures

Abstract

Nitric oxide (NO) is a biologically multifunctional gaseous signaling molecule. For electrochemical NO detections, complex membranes are commonly adopted to acquire the selectivity for NO over other oxidizable biological species. In this study, we demonstrate the improved selectivity in amperometric NO measurements at nanostructured Pt. The Pt layers were electrodeposited on Au substrate electrodes at a constant potential (−0.2 V vs. Ag/AgCl) with a constant deposition charge (0.08 C). The various distinctive nanostructures of Pt deposits were obtained via either changing the precursor concentrations (from 5 to 75 mM K2PtCl4) or using a different precursor (75 mM H2PtCl6). With a higher K2PtCl4 concentration, the Pt deposition became less sharp and the smoothest Pt was deposited with 75 mM H2PtCl6. The most greatly sharp-pointed nanostructures were generated with the lowest precursor concentration (5 mM K2PtCl4) and exhibited the highest sensitivity, which was attributed to the hydrophobic property of sharply nanostructured Pt. A hydrophobic neutral gas molecule, NO, possibly has a more favorable access to the inner surface of more hydrophobic Pt deposition and eventually increases the oxidation current. NO current sensitivity was enhanced at the more hydrophobic Pt surface, whereas the oxidation currents of acetaminophen, L-ascorbic acid, nitrite and hydrogen peroxide, four oxidizable biological interfering species, were independent of the Pt nanostructure. Conclusively, the enhanced amperometric selectivity to NO was achieved by the simple electrodeposition method without any additional membranes.

Graphical abstract: Selectivity enhancement of amperometric nitric oxide detection via shape-controlled electrodeposition of platinum nanostructures

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2018
Accepted
18 Oct 2018
First published
19 Oct 2018

Analyst, 2019,144, 258-264

Selectivity enhancement of amperometric nitric oxide detection via shape-controlled electrodeposition of platinum nanostructures

S. Kim, Y. Ha, S. Kim, C. Lee and Y. Lee, Analyst, 2019, 144, 258 DOI: 10.1039/C8AN01518J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements