Issue 2, 2019

Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts

Abstract

Discrimination of active pharmaceutical ingredients (APIs) existing as neutral molecules or salts is essential and complicated. However, the discrimination of pharmaceutical salts by confocal Raman micro-spectroscopy remains relatively poorly understood. In this paper, four new salts of triamterene (Tri) cocrystallized with nicotinic acid (NA), benzoic acid (BA), p-toluenesulfonic acid (TA), or isonicotinic acid (INA) were prepared and characterized comprehensively by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy (PLM), and dynamic vapor sorption (DVS). Ionized pteridine is identified by marker peaks in the confocal Raman micro-spectra that are characteristic of C[double bond, length as m-dash]N. The single crystal structures of Tri-NA·H2O and Tri-TA further demonstrate that a proton transfers from the carboxylic group of NA or TA to the pyrimidine N1 atom of Tri and their salts formation take place. The intrinsic dissolution rate (IDR) and apparent equilibrium solubility of these four salts are improved compared to the pure Tri component, especially for Tri-BA. This study provides a valuable insight into pharmaceutical salt discrimination by vibrational spectroscopy and presents that the combination of Tri with an acid can be a possible and promising alternative formulation of Tri.

Graphical abstract: Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts

Supplementary files

Article information

Article type
Paper
Submitted
15 Aug 2018
Accepted
11 Oct 2018
First published
12 Oct 2018

Analyst, 2019,144, 530-535

Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts

B. Peng, Z. Zhang, J. Wang, M. Li, Q. Zhang and X. Mei, Analyst, 2019, 144, 530 DOI: 10.1039/C8AN01579A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements