Nanopipettes: a potential tool for DNA detection
Abstract
As the information in DNA is of practical value for clinical diagnosis, it is important to develop efficient and rapid methods for DNA detection. In the past decades, nanopores have been extensively explored for DNA detection due to their low cost and high efficiency. As a sub-group of the solid-state nanopore, nanopipettes exhibit great potential for DNA detection which is ascribed to their stability, ease of fabrication and good compatibility with other technologies, compared with biological and traditional solid-state nanopores. Herein, the review systematically summarizes the recent progress in DNA detection with nanopipettes and highlights those studies dedicated to improve the performance of DNA detection using nanopipettes through different approaches, including reducing the rate of DNA translocation, improving the spatial resolution of sensing nanopipettes, and controlling DNA molecules through novel techniques. Besides, some new perspectives of the integration of nanopipettes with other technologies are reviewed.