Issue 18, 2019

Mannitol-induced gold nanoparticle aggregation for the ligand-free detection of viral particles

Abstract

Traditional virus detection methods require ligands that bind to either viral capsid proteins or viral nucleic acids. Ligands are typically antibodies or oligonucleotides and they are expensive, have limited chemical stability, and can only detect one specific type of virus at a time. Here, the biochemical surface properties of viruses are exploited for ligand-free, nonspecific virus detection. It has been found that the osmolyte mannitol can preferentially aggregate virus, while leaving proteins in solution. This led to the development of a ligand-free detection of virus using gold nanoparticle (AuNP) aggregation. Porcine parvovirus (PPV) was incubated with AuNPs and aggregation of the PPV-AuNP complex with mannitol was detected by dynamic light scattering (DLS). The lowest detectable concentration of PPV was estimated to be 106 MTT50 per mL, which is lower than standard antibody assays. PPV was also detected when swabbed from a dry surface and in the presence of a protein solution matrix. The enveloped bovine viral diarrhea virus (BVDV) was also detected using mannitol-induced aggregation of BVDV-coated AuNPs. The lowest detectable concentration of BVDV was estimated to be 104 MTT50 per mL. This demonstrates that gold nanoparticle aggregation can detect virus without the use of specific ligands.

Graphical abstract: Mannitol-induced gold nanoparticle aggregation for the ligand-free detection of viral particles

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2019
Accepted
30 Jul 2019
First published
30 Jul 2019

Analyst, 2019,144, 5486-5496

Author version available

Mannitol-induced gold nanoparticle aggregation for the ligand-free detection of viral particles

X. Mi, E. M. Lucier, D. G. Turpeinen, E. L. L. Yeo, J. C. Y. Kah and C. L. Heldt, Analyst, 2019, 144, 5486 DOI: 10.1039/C9AN00830F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements