Issue 22, 2019

A wavelength-resolved electrochemiluminescence resonance energy transfer ratiometric immunosensor for detection of cardiac troponin I

Abstract

In this study, a wavelength-resolved electrochemiluminescence resonance energy transfer (ECL-RET) ratiometric immunosensor from Au nanoparticle functionalized graphite-like carbon nitride nanosheets (Au-g-C3N4) to Au nanoclusters (Au NCs) has been constructed for the first time. At a working voltage of 0 to −1.2 V, Au-g-C3N4 showed a strong cathodic ECL emission with a peak at 460 nm, which overlapped well with the absorption spectra of Au NCs thus stimulating the fluorescence emission of Au NCs at 610 nm. Moreover, within this voltage range, the Au NCs showed no ECL signal; therefore, they would not interfere with the detection of the system. We used cardiac troponin I (cTnI) as an analytical model to construct a sandwich immunosensor based on the ECL-RET ratiometric strategy. By measuring the responses of the ECL460 nm/FL610 nm ratio at different cTnI concentrations, the sensitive detection of cTnI with a wide range of 50 fg mL−1 to 50 ng mL−1 and a low detection limit of 9.73 fg mL−1 can be achieved. This work enriches the wavelength-resolved ECL-RET system and provides an innovative reference for the development of more efficient and sensitive ECL-RET ratiometry.

Graphical abstract: A wavelength-resolved electrochemiluminescence resonance energy transfer ratiometric immunosensor for detection of cardiac troponin I

Article information

Article type
Paper
Submitted
30 Jul 2019
Accepted
08 Sep 2019
First published
17 Sep 2019

Analyst, 2019,144, 6554-6560

A wavelength-resolved electrochemiluminescence resonance energy transfer ratiometric immunosensor for detection of cardiac troponin I

L. Zhu, J. Ye, M. Yan, Q. Zhu and X. Yang, Analyst, 2019, 144, 6554 DOI: 10.1039/C9AN01445D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements