Guidelines for the assembly of hydrogen-bonded macrocycles
Abstract
The formation of well-defined, discrete self-assembled architectures relies on the interplay between non-covalent interactions and cooperative phenomena. In particular, chelate or intramolecular cooperativity is responsible for the assembly of closed, cyclic structures in competition with open, linear oligomers, and it can be enhanced in several ways to increase the stability of a given cycle size. In this article, we review the work of several researchers on the synthesis of hydrogen-bonded macrocycles from ditopic molecules and analyze the main factors, often interrelated, that influence the equilibrium between ring and chain species. Emphasis will be set on the diverse features that can increase cyclization fidelity, including monomer geometry, template effects, conformational effects, intramolecular interactions and H-bonding pattern.