Issue 44, 2019

Effects of phosphorus doping via Mn3P2 on diamond growth along the (100) surfaces

Abstract

In this study, diamond crystals were synthesized via the temperature gradient method at 5.6 GPa and 1230–1245 °C by adding a Mn3P2 dopant and FeNi catalyst. Experimental results showed that Mn3P2 shifted the V-shaped growth region to the upper right by influencing the catalytic properties. The scanning electron microscopy (SEM) photographs of the diamonds synthesized at 1245 °C revealed that there were many dendritic structures in the (100) surfaces. The diamond crystal quality could be improved when the added Mn3P2 was less than 6 wt% at 1245 °C, but it would be seriously damaged when the diamond was heavily doped with Mn3P2. Pits and uneven layered structures appeared on the diamond surfaces when the additive was included at 12 wt% at 1245 °C. The Fourier transform infrared spectroscopy (FTIR) results revealed that the Mn3P2 additive increases the N content of the crystal and that N is present in the diamond crystal in the form of a “C” center. It is worth noting that phosphorus could be doped into diamond crystals by using the Mn3P2 additive and that the other impurities in diamonds were mostly C–N and C–O forms, as confirmed by X-ray photoelectron spectroscopy (XPS). The phosphorus in the sample crystals mainly formed C–P bonds with carbon, while a smaller amount of phosphorus formed P–O bonds with oxygen. The test results of the electrical properties as assessed by the van der Pauw method for the diamond crystals with Mn3P2 doped at 1245 °C revealed a resistivity of 0.516 × 106–9.729 × 106 Ω cm and a negative Hall coefficient, indicative of an n-type semiconductor.

Graphical abstract: Effects of phosphorus doping via Mn3P2 on diamond growth along the (100) surfaces

Article information

Article type
Paper
Submitted
13 Aug 2019
Accepted
07 Oct 2019
First published
09 Oct 2019

CrystEngComm, 2019,21, 6810-6818

Effects of phosphorus doping via Mn3P2 on diamond growth along the (100) surfaces

K. Yu, S. Li, Q. Yang, K. Leng, M. Hu, T. Su, M. Guo, G. Gao, J. Wang and Y. You, CrystEngComm, 2019, 21, 6810 DOI: 10.1039/C9CE01257E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements