Issue 26, 2019

Catalytic dissociation of tris(dimethylamino)silane on hot tungsten and tantalum filament surfaces

Abstract

The dissociation of tris(dimethylamino)silane (TrDMAS) on hot tungsten and tantalum surfaces was studied under collision-free conditions. The products from the hot-wire decomposition of TrDMAS were monitored using a 10.5 eV vacuum ultraviolet laser single-photon ionization in tandem with time-of-flight mass spectrometry. Formation of a methyl radical and N-methyl methyleneimine (NMMI) was detected. A transition from a surface reaction rate-limiting regime at filament temperatures lower than 1800–2000 °C to mass transport regime at higher temperatures (>1800–2000 °C) was observed for the formation of both products. In the surface reaction regime, the Arrhenius behavior was followed in two separate temperature regions with different activation energies. It was found that low temperatures (900–1300 °C) favor the production of the methyl radical and high temperatures (1400–2000 °C) favor the production of NMMI with lower activation energies. A theoretical investigation using ab initio calculations of the concerted and stepwise formation of NMMI along with the homolytic cleavages of N–CH3 and Si–H in the gas phase has shown that the concerted pathway to form NMMI is the most energetically favorable one of all four routes with an activation barrier of 328 kJ mol−1. The lower activation energy values determined experimentally for the formation of NMMI and ˙CH3 as compared to those obtained from theoretical calculations indicate that the dissociation of TrDMAS, an N-containing organosilicon molecule, on the W and Ta surfaces is a catalytic cracking process.

Graphical abstract: Catalytic dissociation of tris(dimethylamino)silane on hot tungsten and tantalum filament surfaces

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2018
Accepted
22 Jan 2019
First published
22 Jan 2019

Phys. Chem. Chem. Phys., 2019,21, 14357-14365

Catalytic dissociation of tris(dimethylamino)silane on hot tungsten and tantalum filament surfaces

E. Owusu-Ansah, A. Rajendran and Y. Shi, Phys. Chem. Chem. Phys., 2019, 21, 14357 DOI: 10.1039/C8CP06669H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements