Issue 31, 2019

Analysis of the EPR spectra of transferrin: the importance of a zero-field-splitting distribution and 4th-order terms

Abstract

Multi-frequency EPR spectroscopy can provide high-level structural information on high-spin Fe3+ sites in proteins and enzymes. Unfortunately, analysis of the EPR spectra of these spin systems is hindered by the presence of broad distributions in the zero-field-splitting (ZFS) parameters, which reflect conformational heterogeneity of the iron sites. We present the analysis of EPR spectra of high-spin Fe3+ bound to human serum transferrin. We apply a method termed the grid-of-errors to extract the distributions of the individual ZFS parameters from EPR spectra recorded in the high-field limit at a microwave frequency of 275 GHz. Study of a series of transferrin variants shows that the ZFS distributions are as characteristic of the structure of a high-spin Fe3+ site as the ZFS parameters themselves. Simulations based on the extracted ZFS distributions reproduce spectra recorded at 34 GHz (Q band) and 9.7 GHz (X band), including subtle variations that were previously difficult to quantify. The X-band spectrum of transferrin shows a characteristic double peak, which has puzzled researchers for decades. We show that the double peak is uniquely related to the term B4−3O4−3(S) in the spin Hamiltonian. Our method is generally applicable in the analysis of spectra that arise from a broad distribution of parameters.

Graphical abstract: Analysis of the EPR spectra of transferrin: the importance of a zero-field-splitting distribution and 4th-order terms

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2019
Accepted
16 Jul 2019
First published
18 Jul 2019

Phys. Chem. Chem. Phys., 2019,21, 16937-16948

Analysis of the EPR spectra of transferrin: the importance of a zero-field-splitting distribution and 4th-order terms

M. Azarkh, P. Gast, A. B. Mason, E. J. J. Groenen and G. Mathies, Phys. Chem. Chem. Phys., 2019, 21, 16937 DOI: 10.1039/C9CP02626F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements