Issue 34, 2019

Unsaturated lipid bilayers at cryogenic temperature: librational dynamics of chain-labeled lipids from pulsed and CW-EPR

Abstract

Fully hydrated bilayers of monounsaturated palmitoyloleoylphosphatidylcholine (POPC) and diunsaturated dioleoylphosphatidylcholine (DOPC) lipids have low main phase transition temperatures (271 K for POPC and 253 K for DOPC). Two-pulse echo detected spectra, combined with continuous wave electron paramagnetic resonance spectroscopy, are employed to study the low-temperature lamellar phases of the POPC and DOPC unsaturated bilayers that are usually studied in the fluid state. Phosphatidylcholine spin-labeled at C-5 and C-16 carbon atom positions along the acyl chain were used and the temperature varied over the range 77–270 K. Segmental chain librational oscillations of small amplitude and with correlation time in the subnanosecond to nanosecond range are found in both membranes. The mean-square angular amplitude, 〈α2〉, of librations increases with temperature, is larger close to the bilayer midplane than close to the first acyl chain segments, and is larger in diunsaturated than in monounsaturated bilayers. In the inner hydrocarbon region of both lipid matrices, 〈α2〉 increases first slowly and linearly with temperature and then more rapidly, and a dynamical transition is detected in the range 190–210 K. Compared to dipalmitoylphosphatidylcholine bilayers of fully saturated symmetric chain lipids, the presence of double bonds in the acyl chain enhances the intensity of librational motion which is characterized by larger angular variations at the terminal methyl ends. These findings highlight biophysical properties of unsaturated bilayers in the frozen state, including a detailed characterization of segmental chain dynamics and the evidence of a dynamical transition that appears to be a generic feature in hydrated macromolecular systems. These results can also be relevant in regulating membrane physical properties and function at higher physiological temperatures.

Graphical abstract: Unsaturated lipid bilayers at cryogenic temperature: librational dynamics of chain-labeled lipids from pulsed and CW-EPR

Article information

Article type
Paper
Submitted
12 Jun 2019
Accepted
12 Aug 2019
First published
12 Aug 2019

Phys. Chem. Chem. Phys., 2019,21, 18699-18705

Unsaturated lipid bilayers at cryogenic temperature: librational dynamics of chain-labeled lipids from pulsed and CW-EPR

E. Aloi, R. Guzzi and R. Bartucci, Phys. Chem. Chem. Phys., 2019, 21, 18699 DOI: 10.1039/C9CP03318A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements