Quick temperature-sweep pure-shift NMR: the case of solvent effects in atorvastatin†
Abstract
Pure-shift NMR experiments provide highly resolved spectra, which could be perfect for precise monitoring of chemical shift variations under different conditions, such as temperature or concentration. However, their sensitivity is relatively low and signal sampling is time-consuming, which leads to long experimental times, making such serial acquisition problematic. In this paper we present a new method of NMR spectroscopy which improves the speed and sensitivity of serial pseudo-two-dimensional pure-shift experiments. The example of variable-temperature study of atorvastatin reveals the potential of the method in verifying the theoretical predictions of solvent-dependent spectral effects.