Broadband visible-near infrared and deep ultraviolet generation by four-wave mixing and high-order stimulated Raman scattering from the hybrid metasurfaces of plasmonic nanoantennae and Raman-active nanoparticles†
Abstract
The efficient generation of a broadband frequency comb from the visible to ultraviolet region is a challenging task despite its importance for nanoscale spectroscopy and sensing applications. In this paper, we reported broadband visible-near infrared and deep ultraviolet generation by four-wave mixing and high-order stimulated Raman scattering from hybrid metasurfaces made of plasmonic nanoantennae embedded with Raman-active diamond nanoparticles as examples. Upon two-color near-infrared pumping tuned to a Raman resonance, one can generate a visible-near infrared frequency comb with a major contribution of high-order stimulated Raman scattering by the coherent modulation of the Raman medium and simultaneously, a broad deep ultraviolet frequency comb is radiated by four-wave mixing and third-harmonic generations. The efficiencies of the individual spectral peaks reached values in the order of 10−8–10−2% under pumping with pulses with a peak intensity of about 33 GW cm−2 and a duration of 100 fs in the near infrared region.