Issue 14, 2019

Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction

Abstract

The low temperature hydrothermal stability of Cu/SAPO-34 catalysts for the NH3-SCR reaction, prepared by three different structure directing agents (SDAs), i.e., morpholine (MO), triethylamine (TEA), and tetraethylammonium hydroxide (TEAOH), was investigated by exposing them to various amounts of water vapor. XRD and BET studies indicate that there was no sign of Cu/SAPO-34 catalyst's chabazite (CHA) structural collapse due to water vapor exposure up to 55 h regardless of SDA choice. However, a multinuclear solid-state magic angle spinning (SS-MAS) NMR study of Cu/SAPO-34(MO, TEA, TEAOH) suggests that the water vapor exposure had significantly altered the coordination environment of Al, P, and Si, the extent of which depends on the choice of SDA along with water vapor exposure time. NO-DRIFTS and H2-TPR studies suggest different mobility for Cu ions between the 6MR and 8MR of the CHA structure in Cu/SAPO-34(MO, TEA, TEAOH) as the result of water vapor exposure and during the NH3-SCR reaction. The mechanisms for low temperature deactivation of Cu/SAPO-34 were proposed as follows: 1) irreversible Si condensation in the support and 2) Cu migration to less accessible sites and/or formation of CuOx clusters depending on Cu mobility.

Graphical abstract: Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2019
Accepted
02 May 2019
First published
06 Jun 2019

Catal. Sci. Technol., 2019,9, 3623-3636

Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction

J. Woo, D. Bernin, H. Ahari, M. Shost, M. Zammit and L. Olsson, Catal. Sci. Technol., 2019, 9, 3623 DOI: 10.1039/C9CY00240E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements