Issue 22, 2019

Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta)

Abstract

Propane dehydrogenation (PDH) is one of the most promising candidates for the propylene production process to meet the growing demand of propylene for the future. There is an urgent need to develop catalysts for PDH. In this work, we have synthesized high silica Ga-Beta as a new candidate for a catalyst from dealuminated zeolite using the dry gel conversion method. A high silica Ga-Beta catalyst with a Si/Ga ratio of up to 177 can be synthesized. In the PDH reaction, the synthesized Ga-Beta showed the highest propane conversion and the highest propylene yield amongst the Ga-based zeolites. The combination of the Ga species being incorporated into zeolite frameworks, its large microporosity and Brønsted acidity is likely to lead to the excellent catalytic performance of Ga-Beta. Moreover, Ga-Beta with a higher Si/Ga ratio shows a longer catalyst lifetime for the PDH reaction, since the coke deposition rate decreased with the decrease in the amount of acid. This work provides new insights for the PDH reaction over Ga-based zeolite catalysts, and contributes to the progress in the activation and transformation of light alkenes to value-added chemicals.

Graphical abstract: Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta)

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2019
Accepted
09 Aug 2019
First published
14 Aug 2019

Catal. Sci. Technol., 2019,9, 6234-6239

Author version available

Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta)

M. Nakai, K. Miyake, R. Inoue, K. Ono, H. Al Jabri, Y. Hirota, Y. Uchida, S. Tanaka, M. Miyamoto, Y. Oumi, C. Y. Kong and N. Nishiyama, Catal. Sci. Technol., 2019, 9, 6234 DOI: 10.1039/C9CY00691E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements