Issue 23, 2019

Iridium porphyrin complexes with μ-nitrido, hydroxo, hydrosulfido and alkynyl ligands

Abstract

Iridium porphyrin complexes containing μ-nitrido, hydroxo, hydrosulfido, and alkynyl ligands have been synthesized and structurally characterized, and their oxidation has been studied. The alkyl-IrIII porphyrin complex [Ir(tpp)R] (tpp2− = 5,10,15,20-tetraphenylporphyrin dianion; R = C8H13; 1) was synthesized by reaction of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) with H2tpp in refluxing monoethylene glycol. Treatment of 1 with PPh3 and [(LOEt)Ru(N)Cl2] (LOEt = [(η5-C5H5)Co{P(O)(OEt)2}3]) gave [Ir(tpp)(R)(PPh3)] (2) and the μ-nitrido complex [R(tpp)Ir(μ-N)RuCl2(LOEt)] (3), respectively. The cyclic voltammogram of 3 exhibited a reversible oxidation couple at 0.44 V versus Fc+/0 (Fc = ferrocene). The oxidation of 3 with [(4-BrC6H4)3N](SbCl6) resulted in Ir–C bond homolysis and formation of the chloride complex [Cl(tpp)Ir(μ-N)RuCl2(LOEt)] (4). The short Ir–N(nitrido) bond distances in 3 [1.944(3) Å] and 4 [1.831(4) Å] are indicative of multiple bond character and thus these two μ-nitrido complexes can be described by the two resonance forms: IrIII–N[triple bond, length as m-dash]RuVI and IrV[double bond, length as m-dash]N[double bond, length as m-dash]RuIV. Similarly, the oxidation of 2 with [(4-BrC6H4)3N](SbCl6) yielded [Ir(tpp)Cl(PPh3)] (5). Chloride abstraction of 5 with TlPF6 in tetrahydrofuran (thf) afforded [Ir(tpp)(PPh3)(thf)](PF6) (6) that reacted with CsOH·H2O and Li2S to give the hydroxo [Ir(tpp)(OH)(PPh3)] (7) and hydrosulfido [Ir(tpp)(PPh3)(SH)] (8) complexes, respectively. Treatment of 6 with phenylacetylene in the presence of CuI and Et3N yielded the bimetallic complex [Ir(tpp)(PPh3)(μ-η12-C[triple bond, length as m-dash]CPh)(CuI)] (9), whereas the transmetallation of 6 with LiC[triple bond, length as m-dash]CPh afforded the mononuclear alkynyl complex [Ir(tpp)(PPh3)(C[triple bond, length as m-dash]CPh)] (10). The electrochemistry of the Ir porphyrin complexes has been studied using cyclic voltammetry. On the basis of the measured redox potentials of [Ir(tpp)(PPh3)X], the ability of X to stabilize the IrIV state is ranked in the order: R > PhC[triple bond, length as m-dash]C > Cl ∼ OH. Oxidation of 8 and 9 with [(4-BrC6H4)3N](SbCl6) led to isolation of 5 and [Ir(tpp)(PPh3)(H2O)]+, respectively. The crystal structures of complexes 3, 4, and 7–10 have been determined.

Graphical abstract: Iridium porphyrin complexes with μ-nitrido, hydroxo, hydrosulfido and alkynyl ligands

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2019
Accepted
15 May 2019
First published
15 May 2019

Dalton Trans., 2019,48, 8340-8349

Iridium porphyrin complexes with μ-nitrido, hydroxo, hydrosulfido and alkynyl ligands

S. So, W. Cheung, W. Chiu, M. de Vere-Tucker, H. H.-Y. Sung, I. D. Williams and W. Leung, Dalton Trans., 2019, 48, 8340 DOI: 10.1039/C9DT00244H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements