Issue 30, 2019

Long magnetic relaxation time of tetracoordinate Co2+ in imidazo[1,5-a]pyridinium-based (C13H12N3)2[CoCl4] hybrid salt and [Co(C13H12N3)Cl3] molecular complex

Abstract

The novel organic-inorganic hybrid salt [L]2[CoCl4] (1) and molecular complex [CoLCl3] (2), where L+ is 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, feature simple {CoCl4} and {CoCl3N} tetrahedral environments of negligible (1) and a slightly higher distortion (2) that are responsible for rather low positive magnetic anisotropy of CoII ion with D/hc = 12.1(6) (1) and 19.4(15) cm−1 (2). Both compounds exhibit field-induced slow magnetic relaxation with three relaxation channels [low- (LF), intermediate- and high-frequency (HF) modes] that is frequency and field dependent. With the increased DC field, the peaks referring to the LF relaxation path are moved to lower frequencies so that the applied DC field causes prolongation of the relaxation time. The opposite is true for the HF relaxation branch: the peak is moved to higher frequencies. Considering the simplicity of the coordination environment and moderate magnetic anisotropy of the metal ion in 1 and 2, the compounds are unique with respect to the remarkably long relaxation time for a given applied DC field and temperature: τLF = 0.54(4) s at BDC = 1.0 T and T = 2.0 K for 1, and τLF = 1.8(2) s at BDC = 1.2 T and T = 1.9 K for 2.

Graphical abstract: Long magnetic relaxation time of tetracoordinate Co2+ in imidazo[1,5-a]pyridinium-based (C13H12N3)2[CoCl4] hybrid salt and [Co(C13H12N3)Cl3] molecular complex

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2019
Accepted
26 Jun 2019
First published
27 Jun 2019

Dalton Trans., 2019,48, 11278-11284

Long magnetic relaxation time of tetracoordinate Co2+ in imidazo[1,5-a]pyridinium-based (C13H12N3)2[CoCl4] hybrid salt and [Co(C13H12N3)Cl3] molecular complex

O. Yu. Vassilyeva, E. A. Buvaylo, V. N. Kokozay, B. W. Skelton, C. Rajnák, J. Titiš and R. Boča, Dalton Trans., 2019, 48, 11278 DOI: 10.1039/C9DT01642B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements