Issue 42, 2019

Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes

Abstract

The cobalt alkyne complex [(prop-2-ynyl)-2-acetoxybenzoate]dicobalthexacarbonyl (Co-ASS) is an auspicious lead, which exhibits its anticancer activity mainly by inhibition of both cyclooxygenases (COX-1 and COX-2). Since COX-2 participates in carcinogenesis, a selective inhibition of that isoenzyme is aimed. To study if fluorination increases the COX-2/COX-1 inhibition ratio of the lead, substitution was respectively performed in the positions 3, 4, 5, and 6 of the aromatic moiety. The complexes 3/4/5F-Co-ASS and to a much lower extent also 6F-Co-ASS showed cytotoxic, antimetabolic, and apoptotic effects in COX-1/2-positive HT-29 and MDA-MB-231 cells and remarkably less activity in the COX-1/2-negative MCF-7 cell line. The metabolic activity in MCF-7 cells was even unaffected up to a concentration of 40 μM. With exception of 6F-Co-ASS, the complexes strongly reduced the PGE2 synthesis in HT-29 cells and all complexes inhibited COX-2 more effectively than COX-1 in an assay at isolated enzymes. These findings point to an interference in the COX cascade as part of the mode of antitumor action. The limited cellular effects of 6F-Co-ASS are related to its poor uptake as determined by HR CS AAS/MAS. Moreover, the cellular uptake studies confirm fluorination as beneficial tool for bioanalytical labeling. The higher quantification of fluorine by HR CS MAS makes this method about 5-fold more sensitive than HR CS AAS measuring cobalt. As a further positive result, 3/4/5/6-Co-ASS demonstrated high selectivity to tumor cells due to lack of antimetabolic activity against the non-tumorigenic bone marrow stromal cell line HS-5.

Graphical abstract: Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes

Supplementary files

Article information

Article type
Paper
Submitted
15 Aug 2019
Accepted
19 Sep 2019
First published
14 Oct 2019

Dalton Trans., 2019,48, 15856-15868

Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes

D. Baecker, V. Obermoser, E. A. Kirchner, A. Hupfauf, B. Kircher and R. Gust, Dalton Trans., 2019, 48, 15856 DOI: 10.1039/C9DT03330K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements