Issue 10, 2019

Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects

Abstract

Solid oxide electrolysis cells (SOECs) convert renewable electricity to fuels with efficiency substantially higher than other electrolysis technologies. However, questions remain regarding degradation mechanisms that limit SOEC long-term stability. One of the key degradation mechanisms is oxygen electrode delamination; although prior studies have improved the understanding of this mechanism, it is still difficult to predict how degradation depends on SOEC materials and operating conditions, i.e., temperature, voltage, and current density. Here we present a study aimed at developing a quantitative understanding of oxygen electrode delamination. Experimentally, a life test study of symmetric and full cells with yttria-stabilized zirconia (YSZ) electrolytes and Gd-doped ceria (GDC) barrier layers was done with three different perovskite oxygen electrode materials. Fracture was observed at the perovskite–GDC interface above a critical current density and below a critical operating temperature. A theory is presented that combines a calculation of the effective oxygen pressure across the electrolyte with an estimation of the pressure required for fracture. Fracture is correctly predicted for a critical oxygen partial pressure of ∼7200 atm and an associated electrode overpotential of ∼0.2 V, occurring at the electrode/GDC interface because of the relatively low perovskite fracture toughness. Damage at the GDC/YSZ interface was also observed in some cases and explained by a peak in the oxygen pressure at this interface.

Graphical abstract: Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2019
Accepted
26 Jul 2019
First published
26 Jul 2019

Energy Environ. Sci., 2019,12, 3053-3062

Author version available

Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects

B. Park, Q. Zhang, P. W. Voorhees and S. A. Barnett, Energy Environ. Sci., 2019, 12, 3053 DOI: 10.1039/C9EE01664C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements