Issue 10, 2019

Regulation by walnut protein hydrolysate on the components and structural degradation of photoaged skin in SD rats

Abstract

Skin photoaging induced by consecutive exposure of skin to ultraviolet radiation is primarily responsible for skin aging and preparation of food-derived ingredients with anti-aging functions has been the hot topic worldwide. Dietary consumption of food supplements has been found to modulate skin functions and can be useful in the prevention of skin aging. To evaluate the effect of walnut protein hydrolysate (WPH) on photoaged skin, Sprague-Dawley rats (SD rats) were orally administered with WPH and then were regularly exposed to ultraviolet radiation (UV-R). After a consecutive UV-R for 18 weeks, the delaying efficiency of WPH against elasticity degradation was examined and the mechanical mechanism was explored subsequently. The contents of hydroxyproline (Hyp) and hyaluronic acid (HA) in the extracellular matrix (ECM) were measured by biochemical reactions and color rendering procedures; the levels of types I and III collagen (Col I and III) and the activity of matrix metalloproteinase-1 (MMP-1) were detected by enzyme-linked immunosorbent assay (ELISA); the protein levels of elastin and fibrillin-1 were examined by western blotting. Moreover, the histological change in the skin structure was illustrated by hematoxylin & eosin (HE) and Masson staining. The results revealed that WPH evidently enhanced the elasticity of photoaged skin and stimulated the biosynthesis of ECM components Col I, Hyp and HA in the dermal layer; meanwhile WPH inhibited the MMP-1 activity, alleviated epidermal hyperplasia, and repaired the damaged skin mechanical structure in a dose-dependent manner. In particular, in comparison with the UV-R group, the WPH group in which WPH was administered at a high-dose level showed significantly improved skin appearance, ECM components and structure (P < 0.05). Taken together, the elasticity improvement caused by WPH against the skin photoaging process can be attributed to the regulation of the metabolism of the components and repair of the damaged mechanical structure of the ECM. This research proved the potential of WPH as a functional ingredient for the development of anti-photoaging foods.

Graphical abstract: Regulation by walnut protein hydrolysate on the components and structural degradation of photoaged skin in SD rats

Article information

Article type
Paper
Submitted
18 Sep 2018
Accepted
16 Aug 2019
First published
30 Aug 2019

Food Funct., 2019,10, 6792-6802

Regulation by walnut protein hydrolysate on the components and structural degradation of photoaged skin in SD rats

D. Xu, D. Li, Z. Zhao, J. Wu and M. Zhao, Food Funct., 2019, 10, 6792 DOI: 10.1039/C8FO01833B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements