Issue 5, 2019

(+)-Catechin inhibits heart mitochondrial complex I and nitric oxide synthase: functional consequences on membrane potential and hydrogen peroxide production

Abstract

In order to study the in vitro effect of flavan-3-ol (+)-catechin on the enzymatic activities of mitochondrial complex I and nitric oxide synthase (mtNOS), as well as the consequences on the membrane potential and H2O2 production rate, isolated mitochondria from rat heart were exposed to 3 nM to 100 μM (+)-catechin. NADH–Q1 reductase (complex I) and mtNOS activities were inhibited 25% and 50%, respectively, by the addition of 10 nM (+)-catechin to the reaction medium. Moreover, in the nM range, (+)-catechin decreased state 4 mitochondrial membrane potential by about 10 mV, but failed to change the membrane potential measured in the presence of ADP. (+)-Catechin (10 nM) inhibited not only complex I activity, but also the H2O2 production rate (35%) sustained by malate–glutamate, in accordance with the decrease observed in mitochondrial membrane potential. Considering (+)-catechin concentrations lower than 10 nM, linear and positive correlations were obtained between mitochondrial complex I activity and either NO (r2 = 0.973) or H2O2 production rates (r2 = 0.958), suggesting a functional association among these parameters. Altogether, the results indicate that (+)-catechin, at nM concentrations, inhibits mitochondrial complex I activity, leading to membrane potential decline and consequently to reduction in H2O2 and NO production rates. The decrease in mtNOS activity could also be a consequence of the direct action of (+)-catechin on the NOS structure, this effect being in accordance with the functional interaction between complex I and mtNOS, as previously reported.

Graphical abstract: (+)-Catechin inhibits heart mitochondrial complex I and nitric oxide synthase: functional consequences on membrane potential and hydrogen peroxide production

Article information

Article type
Paper
Submitted
20 Sep 2018
Accepted
29 Mar 2019
First published
02 Apr 2019

Food Funct., 2019,10, 2528-2537

(+)-Catechin inhibits heart mitochondrial complex I and nitric oxide synthase: functional consequences on membrane potential and hydrogen peroxide production

D. E. Iglesias, S. S. Bombicino, A. Boveris and L. B. Valdez, Food Funct., 2019, 10, 2528 DOI: 10.1039/C8FO01843J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements