Effect of cell culture models on the evaluation of anticancer activity and mechanism analysis of the potential bioactive compound, iturin A, produced by Bacillus subtilis
Abstract
Two-dimensional (2D) cell culture is widely used to evaluate the potential of food compounds in anticancer activity in vitro. However, 3D culture is rarely used. In this study, we compared the obtained anticancer activity and mechanisms of iturin A, a multiple functional compound produced by Bacillus subtilis, in 2D and 3D cultures of HepG2 cells. 3D culture resulted in a much higher 50% inhibitory concentration (55.26 μM) compared to 2D culture (11.91 μM). Reactive oxygen species accumulation, autophagy, apoptosis characterized by cytochrome c release, high apoptotic protein expression and caspase activation were detected in both 2D and 3D cultures. Induction of paraptosis was also detected in 2D culture and the cytoplasmic vacuoles occurred in large numbers. Compared with 2D culture, 3D culture can simulate the microenvironment in vivo and provide more accurate data. Therefore, 3D culture was recommended for the evaluation of anticancer activity of food compounds towards solid tumors.