Issue 5, 2019

Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats

Abstract

The purpose of this study was to assess the potential effects of polysaccharides from edible mushroom Grifola frondosa (GFP) on lipid metabolic disorders and gut microbiota dysbiosis, and elucidate their possible regulatory mechanisms on lipid and cholesterol metabolism in high-fat diet (HFD)-exacerbated hyperlipidemic and hypercholesterolemic rats. Results showed that oral administration of GFP markedly alleviated dyslipidaemia through decreasing the serum levels of total triglycerides, total cholesterol, and free fatty acids, and significantly suppressing hepatic lipid accumulation and steatosis. Besides, the excretion of fecal bile acids was also promoted by oral administration of GFP. Metagenomic analysis revealed that GFP supplementation (400 mg kg−1 day−1) resulted in significant structure changes on gut microbiota in HFD-fed rats, in particular modulating the relative abundance of functionally relevant microbial phylotypes compared with the HFD group. Key microbial phylotypes responding to GFP intervention were identified to strongly correlate with the lipid metabolism disorder associated parameters using the correlation network based on Spearman's correlation coefficient. Serum and hepatic lipid profiles were found positively correlated with Clostridium-XVIII, Butyricicoccus and Turicibacter, but negatively correlated with Helicobater, Intestinimonas, Barnesiella, Parasutterella, Ruminococcus and Flavonifracter. Moreover, GFP treatment (400 mg kg−1 day−1) regulated the mRNA expression levels of the genes responsible for hepatic lipid and cholesterol metabolism. Oral supplementation of GFP markedly increased the mRNA expression of cholesterol 7α-hydroxylase (CYP7A1) and bile salt export pump (BSEP), suggesting an enhancement of bile acid (BA) synthesis and excretion from the liver. These findings illustrated that GFP could ameliorate lipid metabolic disorders through modulating specific gut microbial phylotypes and regulating hepatic lipid and cholesterol metabolism related genes, and therefore could be used as a potential functional food ingredient for the prevention or treatment of hyperlipidemia.

Graphical abstract: Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2019
Accepted
04 Apr 2019
First published
06 Apr 2019

Food Funct., 2019,10, 2560-2572

Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats

L. Li, W. Guo, W. Zhang, J. Xu, M. Qian, W. Bai, Y. Zhang, P. Rao, L. Ni and X. Lv, Food Funct., 2019, 10, 2560 DOI: 10.1039/C9FO00075E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements