Issue 7, 2019

An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response

Abstract

The anti-cancer activities of brown algae and some active extracts or components from brown algae have been demonstrated. But the anti-tumor activities of eckol, a new natural phlorotannin derived from marine brown algae, are poorly understood. In order to investigate the in vivo anti-tumor effect and its potential mechanisms of eckol in a sarcoma 180 (S180) xenograft-bearing animal model, S180 xenograft-bearing mice were randomly divided into 4 groups: model control, and eckol low-dose (0.25 mg kg−1), middle-dose (0.5 mg kg−1) and high-dose (1.0 mg kg−1) groups. After eckol administration, the tumor inhibition, tumor tissue histology, thymus index and spleen index were measured. The apoptotic tumor cells were detected using the terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) assay. The protein expression levels of cleaved Caspase-3 and Caspase-9 (two key apoptotic proteins), Bcl-2 and Bax (two key anti-apoptosis-related genes), as well as epidermal growth factor receptor (EGFR, a well-known cell proliferation-stimulating molecule in tumorigenesis) and p-EGFR in tumor tissues were determined by western blot. A carbon particle clearance test, measurement of serum cytokine levels, a splenic T lymphocyte proliferation test, and T lymphocyte subpopulation analysis were used to evaluate the effect of eckol on the immune function of tumor-bearing mice. Moreover, CD11c+-dendritic cell (DC) infiltration in tumor tissues was detected by immunohistochemistry, and the surface molecules on bone marrow-derived DCs were analyzed using flow cytometry. The pro-apoptosis and anti-proliferation activities of eckol were manifested by the increased TUNEL-positive apoptotic cells, the upregulated Caspase-3 and Caspase-9 expression, and the downregulated expression of Bcl-2, Bax, EGFR and p-EGFR in eckol-treated transplanted S180 tumors. Most importantly, eckol stimulated the mononuclear phagocytic system, recruited and activated DCs, promoted the tumor-specific Th1 responses, increased the CD4+/CD8+ T lymphocyte ratio, and enhanced cytotoxic T lymphocyte responses in the eckol-treated animals, suggesting its potent stimulatory property on innate and adaptive immune responses. This study suggested that eckol might act as a functional food constituent derived from marine brown algae with a potential in vivo anti-tumor effect achieved by improving the immune response.

Graphical abstract: An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response

Article information

Article type
Paper
Submitted
25 Apr 2019
Accepted
19 Jun 2019
First published
19 Jun 2019

Food Funct., 2019,10, 4361-4371

An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response

M. Zhang, J. Guo, X. Hu, S. Zhao, S. Li and J. Wang, Food Funct., 2019, 10, 4361 DOI: 10.1039/C9FO00865A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements