Issue 12, 2019

Evaluation of the effect of CaD on the bone structure and bone metabolic changes in senile osteoporosis rats based on MLP–ANN methods

Abstract

Senile osteoporosis (SOP) is a related disease of systematic degenerative changes in bones during natural aging. Increasing age is an important factor in its pathogenesis. This experiment was to evaluate the comprehensive effect of calcium with vitamin D3 (CaD) on SOP based on multilayer perception (MLP)–artificial neural network (ANN) methods. 15-month-old male Sprague-Dawley rats were administered CaD for 2 months, while 3-, 6-, 9-, 12-, 15- and 17-month-old rats were used as the mature or aging control groups. We detected the bone mass and bone mineral density (BMD), performed biomechanical testing and measured micro-CT properties to evaluate the degree of osteoporosis. Levels of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRACP), and the ratio of ALP to TRACP both in serum and bone were measured for the evaluation of the bone turnover rate. The bone mRNA and protein expression of ATP6v0d2, IGF-1, BMP2, M-CSF, Wnt5a and TGF-β1 were detected by western blotting (WB), immunofluorescence (IF) and quantitative real time polymerase chain reaction (qRT-PCR) for evaluating bone metabolism in the bone microenvironment. The MLP–ANN model was constructed and used to evaluate the importance of related parameters and the comprehensive action of CaD. Our data showed that bone mass, BMD, maximal load, ultimate displacement, ALP and TRACP in serum and tibia, and the protein and mRNA expressions of ATP6v0d2, IGF-1, BMP2, M-CSF, Wnt5a and TGF-β1 in tibia reached a peak in 6 m rats, and then were gradually decreased with the increase of age to the lowest in 17 m rats. This study demonstrated the degeneration of the bone structure and bone metabolism in SOP rats during the aging process of rats aged 3 to 17 months. CaD could effectively increase bone mass and bone strength, alleviate the degradation of the bone microstructure and rebalance bone remodeling. In addition, the MLP model was a comprehensive method for evaluating the effects of drugs on SOP, which provided a new direction for future drug and nutrition evaluation.

Graphical abstract: Evaluation of the effect of CaD on the bone structure and bone metabolic changes in senile osteoporosis rats based on MLP–ANN methods

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2019
Accepted
29 Oct 2019
First published
05 Nov 2019

Food Funct., 2019,10, 8026-8041

Evaluation of the effect of CaD on the bone structure and bone metabolic changes in senile osteoporosis rats based on MLP–ANN methods

X. Tang, Y. Gao, Y. Chen, X. Li, P. Yu, Z. Ma and R. Liu, Food Funct., 2019, 10, 8026 DOI: 10.1039/C9FO01322A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements