Issue 8, 2019

Enzymatic synthesis and polymerisation of β-mannosyl acrylates produced from renewable hemicellulosic glycans

Abstract

We show that glycoside hydrolases can catalyse the synthesis of glycosyl acrylate monomers using renewable hemicellulose as a glycosyl donor, and we also demonstrate the preparation of novel glycopolymers by radical polymerisation of these monomers. For this, two family 5 β-mannanases (TrMan5A from Trichoderma reesei and AnMan5B from Aspergillus niger) were evaluated for their transglycosylation capacity using 2-hydroxyethyl methacrylate (HEMA) as a glycosyl acceptor. Both enzymes catalysed conjugation between manno-oligosaccharides and HEMA, as analysed using MALDI-ToF mass spectrometry (MS) as an initial product screening method. The two enzymes gave different product profiles (glycosyl donor length) with HEMA, and with allyl alcohol as acceptor molecules. AnMan5A appeared to prefer saccharide acceptors with lower intensity MS peaks detected for the desired allyl and HEMA conjugates. In contrast to AnMan5A, TrMan5A showed pronounced MS peaks for HEMA-saccharide conjugation products. TrMan5A was shown to catalyse the synthesis of β-mannosyl acrylates using locust bean gum galactomannan or softwood hemicellulose (acetyl-galactoglucomannan) as a donor substrate. Evaluation of reaction conditions using galactomannan as a donor, HEMA as an acceptor and TrMan5A as an enzyme catalyst was followed by the enzymatic production and preparative liquid chromatography purification of 2-(β-manno(oligo)syloxy) ethyl methacrylates (mannosyl-EMA and mannobiosyl-EMA). The chemical structures and radical polymerisations of these novel monomers were determined using 1H and 13C NMR spectroscopy and size-exclusion chromatography. The two new water soluble polymers have a polyacrylate backbone with one or two pendant mannosyl groups per monomeric EMA unit, respectively. These novel glycopolymers may show properties suitable for various technical and biomedical applications responding to the current demand for functional greener materials to replace fossil based ones.

Graphical abstract: Enzymatic synthesis and polymerisation of β-mannosyl acrylates produced from renewable hemicellulosic glycans

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2018
Accepted
15 Mar 2019
First published
21 Mar 2019
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2019,21, 2104-2118

Enzymatic synthesis and polymerisation of β-mannosyl acrylates produced from renewable hemicellulosic glycans

A. Rosengren, S. J. Butler, M. Arcos-Hernandez, K. Bergquist, P. Jannasch and H. Stålbrand, Green Chem., 2019, 21, 2104 DOI: 10.1039/C8GC03947J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements