Visible light-mediated and water-assisted selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol†
Abstract
A magnetically separable bimetallic AgPd/Fe@CNX catalyst has been synthesized and utilized for upgrading of lignin-derived guaiacol to cyclohexanol via hydrodeoxygenation using formic acid as a source of hydrogen under visible light irradiation. A nitrogen-enriched carbonaceous material, carbon nitride (CNX), is obtained via calcination of chitosan, a marine-derived abundant waste material and subsequently utilized as a support for the immobilization of nano-ferrites and silver and palladium nanoparticles. Hydrogen generation from renewable sources such as formic acid and its ideal utilization for the upgrading of biomass-derived guaiacol are the main findings. The synergetic effect of Ag and Pd on the CNX support enhances the decomposition of formic acid which is aptly utilized for the selective defunctionalization of guaiacol at ambient pressure.
- This article is part of the themed collection: Green Biorefinery Technologies based on Waste Biomass