Issue 23, 2019

Direct extraction of copper from copper sulfide minerals using deep eutectic solvents

Abstract

Copper is predominantly recovered from sulfide ores by pyrometallurgy – an energy intensive process requiring capture and treatment of released SO2. Whilst some copper ores are amenable to hydrometallurgy, chalcopyrite, the main copper mineral, is challenging to process in aqueous solutions due to surface passivation. The chalcopyrite surface may be less prone to passivation in non-aqueous solvents such as Ionic Liquids. Here we provide the first demonstration that electrochemistry in Deep Eutectic Solvents can solubilise and directly recover high purity copper from solution from three copper sulfide minerals: covellite (CuS), chalcocite (Cu2S) and chalcopyrite (CuFeS2). Cyclic voltammetry supported by EXAFS identifies the metal speciation in solution. In a choline chloride-ethylene glycol DES the main copper species present after dissolution of chalcocite and covellite was [CuCl4]2−. In the solution formed from chalcopyrite, a mix of CuII and CuI species were formed instead. In a choline chloride-urea DES, copper had a mixed chloride/O- or N-donor coordination, potentially altering electrochemical behaviour. Sulfide in the mineral is oxidised to sulfate without the generation of SO2 or H2S. The best selective recovery of copper (99 at%) from chalcopyrite was obtained with a mixed DES of 20 wt% choline chloride-oxalic acid and 80 wt% choline chloride-ethylene glycol. This demonstrates how design of the Deep Eutectic Solvents can enable increased selectivity of copper over iron in the electrowinning stage by changing solute speciation and redox properties.

Graphical abstract: Direct extraction of copper from copper sulfide minerals using deep eutectic solvents

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2019
Accepted
08 Nov 2019
First published
08 Nov 2019

Green Chem., 2019,21, 6502-6512

Direct extraction of copper from copper sulfide minerals using deep eutectic solvents

S. Anggara, F. Bevan, R. C. Harris, J. M. Hartley, G. Frisch, G. R. T. Jenkin and A. P. Abbott, Green Chem., 2019, 21, 6502 DOI: 10.1039/C9GC03213D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements