Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Axons of neurons are contractile, i.e., they actively maintain a rest tension. However, the spatial origin of this contractility along the axon and the role of the cytoskeleton in generating tension and sustaining rigidity are unknown. Here, using a microfluidic platform, we exposed a small segment of the axons of embryonic Drosophila motor neurons to specific cytoskeletal disruption drugs. We observed that a local actomyosin disruption led to a total loss in axonal tension, with the stiffness of the axon remaining unchanged. A local disruption of microtubules led to a local reduction in bending stiffness, while tension remained unchanged. These observations demonstrated that contractile forces are generated and transferred along the entire length of the axon in a serial fashion. Thus, a local force disruption results in a collapse of tension of the entire axon. This mechanism potentially provides a pathway for rapid tension regulation to facilitate physiological processes that are influenced by axonal tension.

Graphical abstract: A connected cytoskeleton network generates axonal tension in embryonic Drosophila

Page: ^ Top