Issue 15, 2019

Epitaxial growth of dual-color-emitting organic heterostructures via binary solvent synergism driven sequential crystallization

Abstract

The controlled construction of organic heterostructured architectures derived from molecules with similar nucleation thresholds and concentrations has been rare and remains a great challenge. Herein, we report a sequential epitaxial growth to synthesize dual-color-emitting organic heterostructures with 9,10-bis(phenylethynyl)anthracene (BPEA) microwire trunks and tris-(8-hydroxyquinoline)aluminium (Alq3) microstructure branches by an anti-solvent induced sequential crystallization strategy. During the epitaxial growth process, the hydrogen-bonding interactions of the anti-solvent and solvent cause a large change in the solubility and crystallization rate of BPEA and Alq3 molecules in the mixed system, which facilitates sequential crystallization of organic molecule pairs with similar nucleation thresholds and concentrations into desired heterostructures by manipulating the synergism of anti-solvents and solvents. The Förster resonant energy transfer process in heterostructures could be modulated by varying the structure of heterostructures, such as the shape, amount and angles of the branches. The present synthesis strategy provides a unique insight into the detailed formation mechanism of complex organic heterostructures, further guiding the construction of more functional heterostructure materials.

Graphical abstract: Epitaxial growth of dual-color-emitting organic heterostructures via binary solvent synergism driven sequential crystallization

Supplementary files

Article information

Article type
Communication
Submitted
05 Oct 2018
Accepted
02 Jan 2019
First published
03 Jan 2019

Nanoscale, 2019,11, 7111-7116

Epitaxial growth of dual-color-emitting organic heterostructures via binary solvent synergism driven sequential crystallization

B. Yin, J. Gu, M. Feng, G. C. Zhang, Z. Zhang, J. Zhong, C. Zhang, B. Wen and Y. S. Zhao, Nanoscale, 2019, 11, 7111 DOI: 10.1039/C8NR08066F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements