Issue 7, 2019

Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications

Abstract

In this paper, we numerically demonstrate a variety of broadband optical waveguide modulators based on the hybrid surface plasmon polariton (HSPP) concept for near-infrared applications. The modulator is composed of strongly coupled double-layer graphene and double rectangle cross-sectional metal nanoribbons separated by three Al2O3 spacers, which are interpolated in a SiO2 waveguide. Owing to the unique strong coupling of HSPPs between metal nanoribbons, the subwavelength confinement, the in-plane electric field component, the light-graphene interaction, and the modulation effect of the modulator are significantly enhanced. The results show the proposed modulator achieves an outstanding performance with a modulation depth (MD) over 2.3 dB μm−1 and a small normalized mode area of ∼10−5 in a wide range of wavelength from 1.3 to 1.8 μm. By optimizing the separation of the double rectangle metal nanoribbons at the telecommunication wavelength of 1.55 μm, the modulator exhibits a high MD of 3.12 dB μm−1, a small footprint of 1.8 μm2, an ultra-wide 3 dB modulation bandwidth of 380.23 GHz, and an ultra-low energy consumption of 29.39 fJ per bit. Furthermore, we also demonstrate a modulator based on two properly apart semicircular (rhombus) metal nanoribbons with a drastically enhanced MD of 11.3 (6.32) dB μm−1 at 1.55 μm. Benefitting from the strong subwavelength confinement and excellent broadband modulation performance, the proposed optical waveguide modulators offer a significant potential to realize various long-wave near-infrared integrated modulators, interconnects and optoelectronic devices.

Graphical abstract: Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications

Article information

Article type
Paper
Submitted
13 Nov 2018
Accepted
28 Jan 2019
First published
29 Jan 2019

Nanoscale, 2019,11, 3229-3239

Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications

L. Ye, K. Sui, Y. Zhang and Q. H. Liu, Nanoscale, 2019, 11, 3229 DOI: 10.1039/C8NR09157A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements