Plasmonic mode conversion in individual tilted 3D nanostructures†
Abstract
We investigate mode conversion in 3D asymmetric nanocones using angle-dependent linear optical spectroscopy and second-harmonic generation microscopy supported by corresponding simulations. The results prove the efficient excitation of the plasmonic out-of-plane mode that enhances the electric near-field at the sharp tip. Furthermore, we introduce two advanced fabrication processes including either etch mask transfer by tilted etching into a metallic layer or tilted electron-beam lithography followed by tilted evaporation and lift-off. These processes enable the fabrication of tilted nanostructures which can be optimized for a given purpose. The combination of the optical properties and the introduced fabrication processes enables a new design of plasmonic nanostructures for ultra-compact sensors or photon sources.