Issue 16, 2019

Highly conductive and metallic cobalt–nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting

Abstract

Water splitting has long been considered as a promising chemical reaction that can produce clean hydrogen fuel to relieve the energy crisis and environmental pollution. Herein, we report that Co0.75Ni0.25Se/NF formed by two-step growth of metallic cobalt–nickel selenide nanorods on porous nickel foam was used as a bifunctional electrocatalyst. Ni foam serves as a slow-releasing nickel source together with a Co source to form a special proportional cobalt–nickel selenide. Due to its unique rough nanostructure, bimetallic cooperative effects and intrinsic metallic character, the obtained Co0.75Ni0.25Se/NF electrode exhibits a low overpotential of 269 mV (50 mA cm−2) for the oxygen evolution reaction and an overpotential of 106 mV (10 mA cm−2) for the hydrogen evolution reaction. Furthermore, this bifunctional electrocatalyst requires a cell voltage of 1.60 V to achieve a current density of 10 mA cm−2. Besides, based on theoretical calculation, it is further shown that the synergy between Co and Ni elements is beneficial for improving the internal structure of the catalyst, resulting in a high electrical conductivity, and low HER Gibbs free-energy and water adsorption energy. The present results indicate that Co0.75Ni0.25Se/NF exhibits advanced electrocatalytic activity for overall water splitting. This work offers an appropriate methodology and theoretical guidance to synthesize a bimetal–selenide electrocatalyst for water splitting.

Graphical abstract: Highly conductive and metallic cobalt–nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting

Supplementary files

Article information

Article type
Paper
Submitted
31 Dec 2018
Accepted
13 Mar 2019
First published
21 Mar 2019

Nanoscale, 2019,11, 7959-7966

Highly conductive and metallic cobalt–nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting

S. Liu, Y. Jiang, M. Yang, M. Zhang, Q. Guo, W. Shen, R. He and M. Li, Nanoscale, 2019, 11, 7959 DOI: 10.1039/C8NR10545F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements