Issue 30, 2019

Effect of interlayer spacing in layered perovskites on resistive switching memory

Abstract

We report here the effect of interlayer spacing in 2-dimensional (2D) perovskites of [C6H5(CH2)nNH3]2PbI4 (anilinium (An) for n = 0, benzylammonium (BzA) for n = 1 and phenylethylammonium (PEA) for n = 2) on resistive switching properties. X-ray diffraction (XRD) reveals that the interlayer spacing of layered PbI2 is increased from 6.98 Å to 13.29 Å for (An)2PbI4, 14.20 Å for (BzA)2PbI4 and 15.92 Å for (PEA)2PbI4, which leads to a monolayer of organic cations with stacked benzene rings between inorganic PbI42− layers. All the samples in the device structure of Ag/PMMA (polymethyl methacrylate)/perovskite/Pt show bipolar switching behavior, where the SET voltage is near +0.2 V and the RESET voltage is less than −0.5 V. The ratio of LRS (low resistance state) to HRS (high resistance state), also called the ON/OFF ratio, is increased from 106 to 108 as interlayer spacing is increased due to the gradual increase in resistance in the HRS. Endurance is slightly improved from 1.3 × 102 for An to 2.2 × 102 for PEA, whereas substantial improvement in retention is observed from 2 × 103 to 5.5 × 103. This indicates that the enhanced 2D structure is beneficial to the kinetics of forming and rupturing the conducting filaments. The ohmic-like conduction mechanism in the LRS and the hopping mechanism in the HRS are observed for all three samples. This work finds that the resistive switching properties and conduction mechanism in the HRS depend on interlayer spacing in 2D perovskites.

Graphical abstract: Effect of interlayer spacing in layered perovskites on resistive switching memory

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2019
Accepted
01 Jul 2019
First published
08 Jul 2019

Nanoscale, 2019,11, 14330-14338

Effect of interlayer spacing in layered perovskites on resistive switching memory

S. Kim, J. Yang, E. Choi and N. Park, Nanoscale, 2019, 11, 14330 DOI: 10.1039/C9NR00438F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements