The radiation chemistry of focused electron-beam induced etching of copper in liquids†
Abstract
Well-controlled, focused electron-beam induced etching of copper thin films has been successfully conducted on bulk substrates in an environmental scanning electron microscope by controlling liquid-film thickness with an in situ correlative interferometry system. Knowledge of the liquid-film thickness enables a hybrid Monte Carlo/continuum model of the radiation chemistry to accurately predict the copper etch rate using only electron scattering cross-sections, radical yields, and reaction rates from previous studies. Etch rates depended strongly on the thickness of the liquid film and simulations confirmed that this was a result of increased oxidizing radical generation. Etch rates also depended strongly, but non-linearly, on electron beam current, and simulations showed that this effect arises through the dose-rate dependence of reactions of radical species.