Issue 39, 2019

Towards the surface hydroxyl species in CeO2 nanoparticles

Abstract

Understanding the complex chemistry of functional nanomaterials is of fundamental importance. Controlled synthesis and characterization at the atomic level is essential to gain deeper insight into the unique chemical reactivity exhibited by many nanomaterials. Cerium oxide nanoparticles have many industrial and commercial applications, resulting from very strong catalytic, pro- and anti-oxidant activity. However, the identity of the active species and the chemical mechanisms imparted by nanoceria remain elusive, impeding the further development of new applications. Here, we explore the behavior of cerium oxide nanoparticles of different sizes at different temperatures and trace the electronic structure changes by state-of-the-art soft and hard X-ray experiments combined with computational methods. We confirm the absence of the Ce(III) oxidation state at the surface of CeO2 nanoparticles, even for particles as small as 2 nm. Synchrotron X-ray absorption experiments at Ce L3 and M5 edges, combined with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) and theoretical calculations demonstrate that in addition to the nanoceria charge stability, the formation of hydroxyl groups at the surface profoundly affects the chemical performance of these nanomaterials.

Graphical abstract: Towards the surface hydroxyl species in CeO2 nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2019
Accepted
19 Sep 2019
First published
19 Sep 2019

Nanoscale, 2019,11, 18142-18149

Towards the surface hydroxyl species in CeO2 nanoparticles

T. V. Plakhova, A. Yu. Romanchuk, S. M. Butorin, A. D. Konyukhova, A. V. Egorov, A. A. Shiryaev, A. E. Baranchikov, P. V. Dorovatovskii, T. Huthwelker, E. Gerber, S. Bauters, M. M. Sozarukova, A. C. Scheinost, V. K. Ivanov, S. N. Kalmykov and K. O. Kvashnina, Nanoscale, 2019, 11, 18142 DOI: 10.1039/C9NR06032D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements