Issue 45, 2019

The inverse design of structural color using machine learning

Abstract

Efficiently identifying optical structures with desired functionalities, referred to as inverse design, can dramatically accelerate the invention of new photonic devices, and this is especially useful in the design of large scale integrated photonic chips. Structural color with high-resolution, high-saturation, and low-loss holds great promise in image display, data storage and information security. However, the inverse design of structural color remains an open challenge, and this impedes practical application. Here, we propose an inverse design strategy for structural color using machine learning (ML) technologies. The supervised learning (SL) models are trained with the geometries and colors of dielectric arrays to capture accurate geometry-color relationships, and these are then applied to a reinforcement learning (RL) algorithm in order to find the optical structural geometries for the desired color. Our work succeeds in finding simple and accurate models to describe geometry-color relationships, which significantly improves the efficiency of the design. This strategy provides a systematic method to directly encode generic functionality into a set of structures and geometries, paving the way for the inverse design of functional photonic devices.

Graphical abstract: The inverse design of structural color using machine learning

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2019
Accepted
25 Aug 2019
First published
27 Aug 2019

Nanoscale, 2019,11, 21748-21758

The inverse design of structural color using machine learning

Z. Huang, X. Liu and J. Zang, Nanoscale, 2019, 11, 21748 DOI: 10.1039/C9NR06127D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements