Issue 45, 2019

X-ray total scattering study of magic-size clusters and quantum dots of cadmium sulphide

Abstract

Four types of magic-size CdS clusters and three different CdS quantum dots have been studied using the technique of X-ray total scattering and pair distribution function analysis. We found that the CdS quantum dots could be modelled as a mixed phase of atomic structures based on the two bulk crystalline phases, which is interpreted as representing the effects of random stacking of layers. However, the results for the magic-size clusters are significantly different. On one hand, the short-range features in the pair distribution function reflect the bulk, indicating that these structures are based on the same tetrahedral coordination found in the bulk phases (and therefore excluding new types of structures such as cage-like arrangements of atoms). But on the other hand, the longer-range atomic structure clearly does not reflect the layer structures found in the bulk and the quantum dots. We compare the effect of two ligands, phenylacetic acid and oleic acid, showing that in one case the ligand has little effect on the atomic structure of the magic-size nanocluster, and in another it has a significant effect.

Graphical abstract: X-ray total scattering study of magic-size clusters and quantum dots of cadmium sulphide

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2019
Accepted
28 Oct 2019
First published
30 Oct 2019

Nanoscale, 2019,11, 21900-21908

X-ray total scattering study of magic-size clusters and quantum dots of cadmium sulphide

L. Tan, A. J. Misquitta, A. Sapelkin, L. Fang, R. M. Wilson, D. S. Keeble, B. Zhang, T. Zhu, F. S. Riehle, S. Han, K. Yu and M. T. Dove, Nanoscale, 2019, 11, 21900 DOI: 10.1039/C9NR06355B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements