Issue 11, 2019

Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066

Abstract

Bioassay-guided isolation based on the antifungal activity of a culture broth of the marine-derived actinomycete Streptomyces caniferus CA-271066 led to the discovery of new 36-membered polyol macrolides, caniferolides A–D (1–4). Their connectivity was determined by spectroscopic methods including ESITOF-MS and 1D/2D NMR. The relative stereochemistry of each stereocluster in these compounds was established using NOE analysis, the universal database method and J-based configuration analysis, further assisted by comparisons with NMR data of structurally related macrolides. Genome sequencing followed by detailed bioinformatics analysis led to the identification of the corresponding biosynthetic gene cluster and allowed the prediction of the stereochemical outcome of their biosynthesis, confirming the relative stereochemistry of each stereocluster already determined by NMR and establishing their stereochemical relationship, ultimately rendering the absolute configuration of all chiral centers. Furthermore, based on our results and already published data, it has been possible to derive the complete absolute configuration of the related macrolides PM100117 and PM100118, astolides A and B, and deplelides A and B. Caniferolides A–D have shown pronounced antifungal activity against Candida albicans and Aspergillus fumigatus alongside antiproliferative activity against five human tumoral cell lines.

Graphical abstract: Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2018
Accepted
14 Feb 2019
First published
15 Feb 2019

Org. Biomol. Chem., 2019,17, 2954-2971

Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066

I. Pérez-Victoria, D. Oves-Costales, R. Lacret, J. Martín, M. Sánchez-Hidalgo, C. Díaz, B. Cautain, F. Vicente, O. Genilloud and F. Reyes, Org. Biomol. Chem., 2019, 17, 2954 DOI: 10.1039/C8OB03115K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements