Recovery of photodegraded rhodamine 6g in ester-containing polymer matrices
Abstract
Self-healing, rhodamine 6g, dye-doped polymers are reported. The amplified spontaneous emission (ASE) photodegrades after repeated exposure to 532 nm laser light at 10 Hz. Recovery of the ASE signal is observed in dye-doped thermoplastic polyurethane and glycol-modified poly(ethylene terephthalate); both polymers contain repeating ester groups in their backbone. The polymer ester groups are hypothesized to mediate the full recovery of rhodamine 6g from a photodegraded state. A small amount of ASE recovery after photodegradation is observed in dye-doped poly(vinyl alcohol), >98% hydrolyzed, where conversion of rhodamine 6g from a long-lived dark state contributes to the majority of the increased ASE signal in poly(vinyl alcohol) while small amounts of recovery from interactions with residual acetate groups are also possible.