Issue 4, 2019

Enhanced intrinsic saturation magnetization of ZnxCo1−xFe2O4 nanocrystallites with metastable spinel inversion

Abstract

The magnetic properties of spinel ferrites (MFe2O4, M = Mn, Fe, Co, Ni, Zn, etc.) are largely determined by the type of divalent cation, M2+ and cation distribution between the tetrahedral and octahedral sites in the structure. Partial substitution of Zn2+ into the thermodynamically preferred tetrahedral coordination in ferrites produces an increase in magnetic saturation at room temperature. However, nanosized crystallites are known to adopt different structures compared to their bulk equivalents. Consequently, reliable characterization of the atomic structure of nanosized ferrites is essential for understanding and tailoring their magnetic properties. Here, we present a meticulous study of the crystal-, magnetic- and micro-structures of mixed ZnxCo1−xFe2O4 spinel ferrite nanocrystallites in the entire composition range (x = 0.0–1.0 in steps of 0.1). Gram-scale nanoparticle preparation was performed via the widely used hydrothermal method. Eight compositions were selected to study the effect of 4 hours vacuum annealing at 823 K. Combined Rietveld refinement of powder X-ray and neutron diffraction data along with Mössbauer analysis reveal how the as-synthesized nanocrystallites adopt metastable cation inversions, different from the well-established and thermodynamically stable inversions of the bulk equivalents. The annealing treatment causes the structure of the crystallites to relax towards a more bulk-like cation distribution. For all compositions, the smaller as-synthesized nanocrystallites with metastable cation inversion exhibit a higher saturation magnetization compared to the annealed samples. The demonstrated control over the spinel ferrite cation distribution is a key step on the way to designing cheap magnetic materials with tunable properties optimized for specific applications.

Graphical abstract: Enhanced intrinsic saturation magnetization of ZnxCo1−xFe2O4 nanocrystallites with metastable spinel inversion

Supplementary files

Article information

Article type
Research Article
Submitted
08 Jan 2019
Accepted
25 Feb 2019
First published
26 Feb 2019

Mater. Chem. Front., 2019,3, 668-679

Enhanced intrinsic saturation magnetization of ZnxCo1−xFe2O4 nanocrystallites with metastable spinel inversion

H. L. Andersen, C. Granados-Miralles, M. Saura-Múzquiz, M. Stingaciu, J. Larsen, F. Søndergaard-Pedersen, J. V. Ahlburg, L. Keller, C. Frandsen and M. Christensen, Mater. Chem. Front., 2019, 3, 668 DOI: 10.1039/C9QM00012G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements