Issue 6, 2019

A skin inspired bio-smart composite with water responsive shape memory ability

Abstract

Learned from skin, advanced functions have been added to existing materials with applications in regenerative machine and electronic skin. In this study, a skin collagen fiber/polyurethane (SCF/PU) composite with a dual-network based on a skin structural model was successfully prepared by a facile “paper-making” procedure. The first collagen nonwoven network was built up by spontaneous entangling and sticking of collagen fibers recycled from animal skin. Such a fibrous structure was then interpenetrated by waterborne PU. By virtue of chemo-mechanical adaptability of both the collagen fiber and PU elastomeric matrix, a water responsive shape memory with high shape fixation (99%) and shape recovery (>90%) has been achieved. Destruction and reformation of hydrogen bonds within the collagen fiber works as a “switch” to achieve shape deformation and fixation. This “switch” opens under the stimulation of water, while elastic entropy of PU promotes shape recovery. The obtained SCF/PU composite can be degradable in simulated body fluid whilst biological evaluation in vitro (MTT assay) proved that the SCF/PU composite has better biocompatibility than pure PU. The reported work offers a novel, simple and eco-friendly route for fabrication of a bio-smart material, which has potential for biomimetic sensors, regenerative medicine and artificial skins.

Graphical abstract: A skin inspired bio-smart composite with water responsive shape memory ability

Supplementary files

Article information

Article type
Research Article
Submitted
21 Feb 2019
Accepted
10 Apr 2019
First published
11 Apr 2019

Mater. Chem. Front., 2019,3, 1128-1138

A skin inspired bio-smart composite with water responsive shape memory ability

Y. Han, J. Hu and X. Chen, Mater. Chem. Front., 2019, 3, 1128 DOI: 10.1039/C9QM00114J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements